Notes on Hungarian Phycitidae (Lepidoptera)

By L. Gozmány, Budapest

In the course of a revisionary work on the Phycitid moths of Hungary, for the new serial work, the Fauna of Hungary, I came up against species which quite evidently could not be regarded as belonging to the genera they were relegated to up to now. Owing to the fact that the species in question are confined but to Hungary in Europe or are very rare in other territories and occur only East and South to this country or, again, being too common they were „taken for granted” as valid members of old genera, they had not been examined more closely concerning their generic replacement. Since they, however, constitute new generic taxa, I propose to describe these new units herewith.

Xenephestia gen. n.

As in Ephestia Gn. (generotype: elutella Hbn.); male with costal fold, differing from the above genus, as follows: costa of forewings straighter, cu₂ further away from cu₁; hindwings: sc + rr on a very long stalk or coincident, not anastomosing with m₁; m₃ and cu₁ never stalked, conascent from lower angle of cell, cell shorter (fig. 1.; E).

Genital differences: costa of harpe smooth in male of Ephestia Gn., harpe with thumb-like protuberance in about the middle of costa in Xenephestia gen. n.

Generic type: cautella Wlk., with, probably among others, figulilella Gregson, callidella Gn., afflulata Mn. The species kühniella Z. has already been transferred to a new genus, Anagasta, by Heinrich (1956)

Synallorema gen. n.

As in Nyctegretis Z., yet with the main venational character of this genus, namely, the almost basal origin from the cell of cu₂ in the hindwing, missing, that is, cu₂ originates very near the lower angle of the cell, not far away from the conascent m₃, cu₁ (fig. 1.; C).

Generic type: triangulella Rag., know form Japan, the Amur, Hungary, Eastern Austria.

Cymbalorissa gen. n.

As in Euzophera Z. (type: cinerosella Z.), with the following differences: cu₁ + m₃ on a very long stalk in the hindwings, m₁ not anastomosing with
the long-stalked \( rr + sc \), discocellular vein very slightly curved, cell reaching but to the middle of wing (fig. 1.: D).

Generic type: *fuliginosella* Hein.

**Catacrobasis gen. n.**

As in *Acrobasis* Z. (type: *tumidella* Zck. = *zelleri* Rag.), yet the antennae of the female simple, apex of forewing rounded. Venation: \( m_2 + 3 \) on a medium long stalk (always conascent in *Acrobasis* Z.). Hindwings: \( m_1 \) conascent with the stalked \( sc + rr \), \( m_2 + 3 \) on a long stalk, conascent with \( cu_1 \) (fig. 1.: A).

![Fig. 1. Wing venation of new Phycitid genera. — A: Catacrobasis. — B: Kyra — C: Synallorema. — D: Cymbalorissa. — E: Xenephestia.](image-url)

Pattern of forewings also differing from the general design of both *Acrobasis* Z. and *Rhodophaea* Gn.

Generic type: *obtusella* Hbn.

**Kyra gen. n.**

The great generic group of *Myelois* Hbn. has been split into almost as many generic taxa as it contained species. The new genus is based on the generic
type *cirrigerella* Zck., which cannot, and could not, be relegated to any of the several genera up to now.

Forewings: \(r_2\) missing (present in most of the other genera, as in *Myelois* Hbn., *Ectomyelois* Heinr., *Myelopsis* Heinr., *Apomyelois* Heinr.) \(r_4\) before apex, discocellular vein almost straight. Hindwings: \(m_2 + 3\) on a long stalk, with \(cu_1\) originating from before the lower angle of cell (not conascent with them, as in *Ectomyelois-Myelopsis-Apomyelois*, or constituting a distinct postcellular vein below the discocellular one, as in *Myelois* Hbn. (fig. 1.: B).

The patternless wings also differentiate the new genus from the allied taxa.

Generic type: *cirrigerella* Zck.