The subspecific division of *Rhinolophus luctus* Temminck, 1835, and the taxonomic status of *R. beddomei* Andersen, 1905 (Mammalia, Chiroptera)

by Gy. Topál and G. Csorba (Received June 22, 1992)

Abstract: The subspecific division of *Rhinolophus luctus* Temminck, 1835 is reviewed, and the taxonomic status of *Rhinolophus luctus beddomei* (Andersen, 1905) is discussed. Specimens in the Bombay Natural History Society, The Natural History Museum, London, and a recently collected Vietnamese animal are statistically analysed. The South-Indian *Rhinolophus beddomei* is regarded as different from *Rhinolophus luctus* at specific level.

Key words: taxonomy, systematics, morphometrics, Oriental Region, *Rhinolophus*.

Introduction

The species *Rhinolophus luctus* Temminck, 1835 is the largest known form in its genus. It is also among the rarest horseshoe bats due to its solitary habits, found singly or in pairs, and therefore it is rare in collections. Besides this species, a number of closely related forms have been made known to science during the past century and a half.

The typical race comes from Java and another form described as a separate species *R. morio* Gray, 1842 from Singapore. The apparently most common form with the most extended range, *R. l. perniger* Hodgson, 1843 was named from

Nepal.

Later, several other forms were described from 1905 onwards. Andersen (1905a, 1905b, 1918) introduced R. lanosus from NW Fokien, China, R. geminus from Java, R. morio foetidus from Borneo, R. beddomei from Mysore, India, R. beddomei sobrinus from Sri Lanka. Andersen (1905a) noted that R. geminus was much nearer the Himalayan form (R. perniger) than to R. luctus living in Borneo and the Malay Peninsula. He also remarked under R. luctus p. 252: "If by further examination Java specimens should prove to differ from Borneo-Malacca form, the former will have to stand as Rh. luctus, the latter as Rh. morio Gray", further: "in every other respect" (other than colour) "Rh. morio is indistinguishable from Selangor and Borneo specimens". G. Allen (1928) described R. lanosus spurcus from Hainan, China. He gave for the skull measurements of R. l. spurcus (p.3) about as great values as those of true R. l. perniger when he stated them to be greater than those of R. lanosus. Sanborn (1939) published R. formosae from Taiwan. Chasen (1940) synonymized R. l. geminus with R. luctus and confined the latter to Java and part of Sumatra, and regarded both R. morio (distributed in the Malay Peninsula and part of Sumatra), and R. foetidus (Borneo) as separate subspecies of R. luctus. Tate (1943), Tate & Archbold (1939) appeared to regard all named forms as subspecies of R. luctus (see also Ellerman & Morrison-Scott 1951, p. 121), although they remarked "their treatment as races is provisional"..and ..."A detailed and painstaking analysis with a large quantity of material will be required before the races of *R. luctus* can be worked out satisfactorily" (Tate 1943 p. 5).

It is somehow strange that Tate (1943), while retaining Andersen's original "groups", put *R. pearsoni* in the *R. luctus* group and thus - in a later sense - as a subspecies of the latter. Well after that, *R. pearsoni* was recognized as a clearly distinct species by Ellerman & Morrison-Scott (op. cit.). (Incidentally, the specimen of *R. l. perniger* deposited in the Hungarian Natural History Museum, was found in the same cellar as a small colony of *R. pearsoni* at Tam Dao in Vietnam by the present junior author.)

Sinha (1973) gave details on the material in the Calcutta collection of the Zoological Survey of India. Lekagul & McNeely (1977) considered "probably two subspecies in Thailand: *R. l. luctus* in the south as far north as Tenasserim, and perhaps *R. l. perniger* in the north". Payne *et al.* (1985) briefly discussed the ecology and habitat of *R. l. foetidus* and reported it from lowlands up to 1600 m in the mountains of Borneo. Liang & Dong (1984) and Chen *et al.* (1989) reported the species from further localities in Southern China. Ando *et al.* (1983) studied the karyotype of the species from Taiwan, Narayana Naidu & Gururaj (1984) in India, and Harada *et al.* (1985) the same topic in the specimens from Thailand.

Materials and methods

During the rather intensive collectings of bats by the senior author in India, this bat (*R. beddomei*) was seen but once in Southwestern India. The species and the South-Indian *R. beddomei* were studied briefly (by the senior author) in the Bombay Natural History Society's collection where there were available 6 specimens of *R. l. beddomei*, 6 specimens of *R. l. perniger* and 1 specimen of *R. l. lanosus* in 1967. The female *R. l. perniger* obtained by the junior author is the third known specimen from northern Vietnam, the first two were collected at the same locality and deposited in the Institute of Systematics and Evolution of Animals, Krakow, Poland (Cao Van Sung in litt.).

Skulls of thirty specimens of *Rhinolophus luctus* (s.l.) were used for the present study. List of the specimens with names of subspecies (*R. l. perniger, R. l. morio, R. l. foetidus, R. l. beddomei*), serial number for the present study, location of the specimen (Hungarian Natural History Museum, Budapest = HNHM, The Natural History Museum, London = BNHM, Bombay Natural History Society, Bombay = BNHS), register No., sex (male = m, female = f, undetermined = s?), and collecting locality as follows.

- R. l. perniger: 1:HNHM 11111, f, Tam Dao, Vietnam; 2:BNHM 78.2310., m,Chiangmai, Thailand; 3:BNHM 7.1.1.294., s?, "Calcutta", India(?); 4:BNHM 9.10.11.2., s?,Chiangmai, Thailand; 5:BNHM 21.1.6.4., m, Khonshong, Jaintia Hills, Meghalaya, India; 6:BNHM 21.1.6.5., m, Khonshong, Jaintia Hills, Meghalaya, India; 7:BNHM 79.11.21.142., s?, Masuri (Mussoorie), Uttar Pradesh, India; 8:BNHM 79.11.21.141., m, Masuri (Mussoorie), Uttar Pradesh, India; 9:BNHM 91.4.11., m, Darjeeling, West Bengal, India; 10:BNHM 91.10.7.55., s?, Sikkim; 11:BNHM 23.1.9.1., f, Chalma-Khel, Nepal; 12:BNHM 21.1.6.2., Bankochori, S.Tenasserim, Burma; 13:BNHM 21.1.6.3, Kindat, Chin Hills, Burma; 14:BNHM 50.396., f, Nam Tamas Valley, Upper Burma; 15:BNHM 50.397., f, Taron Valley, Upper Burma; 16:BNHM 21.1.6.1., m, Sokteik, N.Shan State, Burma; 17:BNHS 3073, f, Khonshong, Jaintia Hills, Meghalaya, India; 19:BNHS 3071, f, Bouzini, Nepal.
- R. l. morio: 20:BNHM 1.3.9.3., s?, Semangko Gap, Selangore, Malaysia; 21:BNHM 78.2309., f, Pak Thengchai, Sukerat, Thailand; 22:BNHM 70.1463., f, Korat Pn, Thailand.
- R. I. foetidus: 23:BNHM 76.9.20.12., s?, N.W.Borneo; 24:BNHM 92.2.7.3., f, Mt.Dulit, Borneo; 25:BNHM 94.9.29.4., s?, Mt.Dulit, Borneo; 26:BNHM 98.11.3.9., s?, Lawas, Borneo; 27:BNHM 59.183., f, Lobang Badak, Serabang, Borneo.
- R. I. beddomei: 28:BNHM 12.11.28.5., m, Sirsi, N.Kanara, Karnataka, India; 29:BNHM 11.3.16.1., f, Konkan, Maharashtra, India; 30:BNHS 3081, m, Karla Caves, Pune, Maharashtra, India.

Specimen with registration no. 70.1463. from Central Thailand in the BNHM was identified as *R. l. perniger*, however, according to J.E. Hill's notes on its label made in 1974 "perniger but small and tends to *morio*". Another specimen (73.2310.) from N. Thailand was identified as *R. l. perniger* with question mark on its label and placed in a box with specimens of *R. l. morio*.

Only 14 measurements of the above mentioned three R. l. perniger and one R. beddomei in the Bombay Natural History Society collection (BNHS) were taken with the help of a vernier caliper. Except when a skull was fragmentary, all the other specimens were measured for a total of 38 cranial and dental characters with a "Digimatic" caliper to 0.01 mm accuracy. A series of measurements, especially those of short distances and teeth were measured with the caliper under a stereomicroscope. Abbreviations of the measurements used in the paper along with explanations are as follows.

```
C-CONDYL
                condylar length of skull (from front of canines to back of condyles)
TOTAL-LE
                total length of skull (from front of canines to occiput)
BASIL-LE
                basilar length of skull (from frontal edge of palate [without praemaxillae]
                to the foremost part of ventral incision between condyles)
ZYG-WIDT
                width of skull between zygomata
MAST-WID
                mastoid width of skull (between mastoid knobs)
C-C-WIDT
                width of rostrum between outer margins of crown of canines
M3-M3-WI
                width of rostrum between outer crowns of M3s
UC-M3-LE
                crown length of upper C-M3
PALBRI-L
                length of palatal bridge (without the posterior spike)
COCH-DIS
                distance between cochleae
BRCASE-W
                width of braincase (just above mastoid knob)
BRCASE-H
                height of braincase (from base to top with sagittal crest)
LACFOR-W
                width of rostrum between lacrimal foramina
                crown length of upper C-P4
UC-P4-LE
                crown length of upper M<sup>1</sup>-M<sup>3</sup> (from the anteriormost portion of parastyle of M<sup>1</sup>
UM1-M3-L
                to the posteriormost edge of protocone of M<sup>3</sup>)
                basal cross-sectional length of upper C
UC-BLENG
                basal cross-sectional width of upper C
UC-WIDTH
                antero-posterior length of upper M<sup>1</sup> (between parastyle and metastyle)
UM1-LENG
                width of upper M1 (between lingual base of protocone
UM1-WIDT
                and labialmost edge of mesostyle)
                antero-posterior crown length of upper P2
UP2-LENG
UP2-WIDT
                crown width of upper P2
                greatest length of bulla
BULLA-LE
MAND-LEN
                length of mandible (between hindermost portion of articular process
                and anteriormost edge of I<sub>1</sub> alveolus)
LC-M3-LE
                crown length of lower C-M3
LC-P4-LE
                crown length of lower C-P4 row
LM1-M3-L
                crown length of lower M<sub>1</sub>-M<sub>3</sub> (between anterior edge of paraconid of M<sub>1</sub>
                and posterior margin of hypoconulid of M<sub>3</sub>)
PR-COR-H
                height of coronoid process (between its top and the sinus on ventral profile
                of mandibular body)
LP4-LENG
                length of lower P4 (between its paraconid and hypoconulid)
LP4-WIDT
                greatest basal width of lower P4
LP2-LENG
                greatest basal length of lower P2
LP2-WIDT
                greatest basal width of lower P2
LM1-LENG
                length of lower M<sub>1</sub> (between its paraconid and hypoconulid)
LM1-TA-W
                talonid width of lower M1
LM3-LENG
                length of lower M<sub>3</sub> (between its paraconid and hypoconulid)
LM3-TA-W
                talonid width of lower M3
INTERO-W
                width of interorbital constriction
NAKNOB-W
                width of nasal knob
NAKNOB-H
                greatest height of nasal knob (from palate to top)
```

For the statistical analyses of the available variables the SYSTAT statistical computer programme package (Wilkinson 1990) was used.

Results and discussion

There were noted the following differences between *R. l. perniger* (3073, Jaintia Hills, Figs 1, 2, 3) and *R. l. beddomei* (3081, Pune, Figs 4, 5, 6) in the Bombay Society's collection.

The skull of R. beddomei is found to be much smaller with relatively greater zygomatic width, with much shallower hollow above the interorbitalia. The backward-curving hook of premaxilla is shorter and thus the central hole is not closed as in R. l. perniger. The premaxillae join the maxillary palate with an absolutely wider base than in R. l. perniger. The opening of the choana between pterygoids, that is, the palation is identical to the one in the other form, however, smaller. The bulla tympani in R. beddomei is less inflated. The upper toothrows of R. beddomei are anteriorly nearer to each other. The upper C and P⁴ are of smaller basal crosssection, apparently because of their less developed cingula in R. beddomei. The upper C of R. beddomei on its extero-posterior base has no impression for P² as in R. I. perniger. As regards the differences in the mandibles of the two forms, the coronoid process seems more narrowely pointed in the smaller mandible of R. beddomei. The lower C is antero-posteriorly more shortened and also the P_A is much shorter than in R. l. perniger. The less sloping labial cingulum of the latter is but with a slight wave in R. beddomei. The talonid of M₃ of R. beddomei is much wider and also wider than its trigonid, just opposite to the case in R. l. perniger.

The authors recently studied the skulls of the available specimens (except types) in the collection of The Natural History Museum, London (Figs 7, 8, 9) and the skull of the specimen in the Budapest collection from Vietnam (Figs 10, 11). Disregarding the few specimens from Thailand, collected in the seventies, the collection of the skulls in London is about the same as in Andersen's time.

Statistical data

Generally speaking, especially the cranial measurements of *R. beddomei* are smaller than those of others as shown by the basic statistical data (see Tables 1, 2, 3,).

Table 1. Basic statistical data of *R. beddomei*, total observations: 3

	C-CONDYL	TOTAL-LE	BASIL-LE	ZYG-WIDT	MAST-WID
N. OF CASES	3	3	3	3	3
MINIMUM	23.410	26.650	17.790	13.810	12.000
MAXIMUM	24.550	27.800	18.690	14.200	12.470
C-C-WIDT	M3-M3-WI	UC-M3-LE	PALBRI-L	COCH-DIS	BRCASE-W
3	3	3	3	2	2
7.260	9.710	10.130	3.900	0.790	10.550
7.590	10.200	10.490	4.700	0.890	11.450
BRCASE-H	LACFOR-W	UC-P4-LE	UM1-M3-L	UC-BLENG	UC-WIDTH
2	2	2	2	2	2
7.910	5.640	4.620	6.280	2.100	1.780
8.020	5.680	4.870	6.330	2.160	1.940
UM1-LENG	UM1-WIDT	UP2-LENG	UP2-WIDT	BULLA-LE	MAND-LEN
2	2	2	2	2	3
2.230	2.750	0.550	0.670	4.190	18.500
2.350	3.050	0.710	0.760	4.270	18.860

-	9	h	0	1	co	nt

LC-M3-LE	LC-P4-LE	LM1-M3-L	PR-COR-H	LP4-LENG	LP4-WIDT
3	2	2	2	2	2
10.920	4.040	6.870	4.690	1.500	1.430
11.070	4.100	7.060	4.780	1.590	1.530
LP2-LENG	LP2-WIDT	LM1-LENG	LM1-TA-W	LM3-LENG	LM3-TA-W
2	2	2	2	2	3
1.210	1.100	2.350	1.810	2.170	1.640
1.310	1.210	2.360	1.900	2.360	1.710
INTERO-W	NAKNOB-W	NAKNOB-H			
2	2	3			
2.500	7.010	5.200			
2.630	7.260	5.620			

Table 2. Basic statistical data of R. l. perniger, total observations: 19

	C-CONDYL	TOTAL-LE	BASIL-LE	ZYG-WIDT	MAST-WID
N. OF CASES	15	17	14	16	16
MEAN	27.811	31.195	21.308	15.363	13.728
STD DEV.	0.617	0.842	0.594	0.768	0.275
MINIMUM	26.650	29.700	20.420	13.270	13.200
MAXIMUM	28.800	32.550	22.400	16.450	14.120
C-C-WIDT	M3-M3-WI	UC-M3-LE	PALBRI-L	COCH-DIS	BRCASE-W
17	18	19	17	12	13
8.555	10.940	12.125	4.891	0.773	12.053
0.321	0.368	0.375	0.367	0.174	0.357
8.080	9.960	11.490	4.300	0.460	11.540
9.130	11.720	12.900	5.600	1.110	12.830
BRCASE-H	LACFOR-W	UC-P4-LE	UM1-M3-L	UC-BLENG	UC-WIDTH
12	15	16	16	16	16
8.599	6.641	5.692	7.138	2.653	2.252
0.386	0.235	0.254	0.237	0.180	0.141
7.980	6.260	5.240	6.810	2.340	2.030
9.260	7.180	6.110	7.540	3.000	2.520
UM1-LENG	UM1-WIDT	UP2-LENG	UP2-WIDT	BULLA-LE	MAND-LEN
16	16	16	16	13	17
2.686	3.028	0.853	0.999	4.724	22.252
0.110	0.194	0.137	0.087	0.196	0.549
2.550	2.670	0.580	0.780	4.460	21.100
3.010	3.350	1.070	1.100	5.050	23.280
LC-M3-LE	LC-P4-LE	LM1-M3-L	PR-COR-H	LP4-LENG	LP4-WIDT
19	16	16	14	16	16
13.003	5.198	7.893	5.456	1.826	1.671
0.406	0.209	0.261	0.373	0.092	0.148
12.350	4.790	7.440	4.870	1.650	1.420
14.080	5.600	8.470	6.390	1.940	1.870
LP2-LENG	LP2-WIDT	LM1-LENG	LM1-TA-W	LM3-LENG	LM3-TA-W
16	16	16	17	15	16
1.411	1.399	2.693	1.993	2.593	1.799
0.113	0.122	0.085	0.170	0.097	0.115
1.230	1.120	2.570	1.670	2.380	1.630
1.580	1.570	2.900	2.360	2.730	1.980
INTERO-W	NAKNOB-W	NAKNOB-H			
16	16	16			
3.008	8.709	6.148			
0.250	0.312	0.341			
2.430	7.880	5.480			
3.400	9.190	7.050			

Table 3. Combined basic statistical data of R. I. foetidus and R. I. morio, total observations: 8

	C-CONDYL	TOTAL-LE	BASIL-LE	ZYG-WIDT	MAST-WID
N. OF CASES	5	7	4	7	7
MEAN	26.346	29.483	19.950	15.014	13.186
STD DEV.	0.633	0.713	0.665	0.549	0.359
MINIMUM	25.320	28.050	19.140	14.490	12.680
MAXIMUM	26.960	30.230	20.710	16.080	13.800
C-C-WIDT	M3-M3-WI	UC-M3-LE	PALBRI-L	COCH-DIS	BRCASE-W
7	7	8	7	5	7
8.094	10.859	11.444	4.104	0.838	11.663
0.221	0.197	0.268	0.512	0.252	0.323
7.670	10.560	10.950	3.320	0.470	11.150
8.360	11.080	11.830	4.820	1.150	12.000
BRCASE-H	LACFOR-W	UC-P4-LE	UM1-M3-L	UC-BLENG	UC-WIDTH
5	7	8	8	8	8
8.336	6.174	5.189	6.721	2.511	2.190
0.302	0.326	0.091	0.036	0.014	0.020
7.840	5.570	4.780	6.400	2.250	1.980
8.650	6.480	5.740	7.000	2.630	2.380
UM1-LENG	UM1-WIDT	UP2-LENG	UP2-WIDT	BULLA-LE	MAND-LEN
8	8	8	8	6	8
2.570	3.054	0.791	0.926	4.502	20.875
0.037	0.052	0.013	0.092	0.240	0.378
2.360	2.660	0.610	0.790	4.140	20.040
2.880	3.400	0.950	1.040	4.760	21.310
LC-M3-LE	LC-P4-LE	I M1 M2 I	PD COD II	I DA I ENC	LP4-WIDT
8	8	LM1–M3–L 8	PR-COR-H 8	LP4–LENG 8	
					8
12.283	4.780	7.561	5.434	1.680	1.635
0.238	0.222	0.169	0.106	0.096	0.116
11.890	4.490	7.220	5.310	1.560	1.470
12.580	5.040	7.730	5.580	1.820	1.790
LP2-LENG	LP2-WIDT	LM1-LENG	LM1-TA-W	LM3-LENG	LM3-TA-W
8	8	8	8	8	8
1.316	1.370	2.544	1.941	2.453	1.820
0.130	0.102	0.050	0.051	0.103	0.073
1.200	1.180	2.450	1.870	2.300	1.680
1.640	1.490	2.590	2.000	2.580	1.890
INTERO-W	NAKNOB-W	NAKNOB-H			
8	7	7			
2.580	7.814	5.816			
0.234	0.379	0.332			
2.320	7.320	5.280			
3.040	8.400	6.340			

In the following 18 characters *R. beddomei* appears to be significantly different from the rest of the material: C-CONDYL⁺, TOTAL-LE⁺, BASIL-LE⁺, ZYG-WIDT⁺, MAST-WID⁺, M3-M3-WI⁺, C-C-WIDT⁺, UC-M3-LE⁺, UM1-M3-L⁺, UC-BLENG⁺, UC-WIDTH, UP2-WIDT, MAND-LEN⁺, LC-M3-LE⁺, LC-P4-LE⁺, LM1-M3-L, PR-COR-H⁺, LM1-LENG⁺. There are no overlaps in boxes made by the high-low graphs (Figs 12, 13) between the maximum values of *R. beddomei* and the minimum values of the other forms (for the small samples of *R. l. morio*, *R. l. foetidus*, and *R. beddomei* the actual minimum

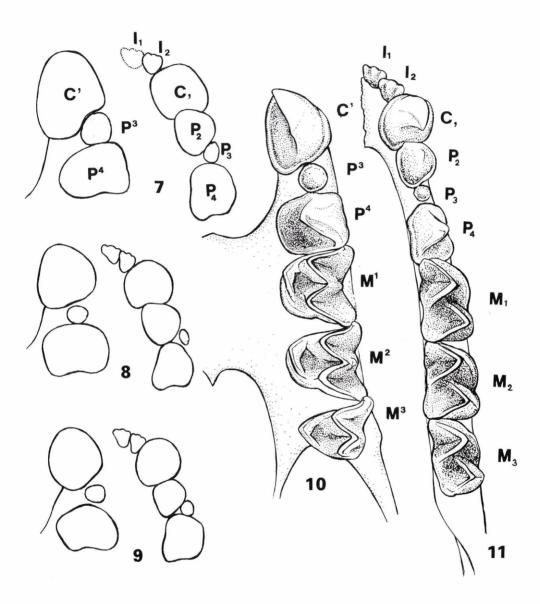


Fig. 7. Occlusal view of anterior part of upper and lower dentition in BNHM 92.2.7.3. R. L foetidus Figs 8-9. Occlusal view of anterior part of upper and lower dentition in R. beddomei, 8 = BNHM 12.11.28.5., 9 = BNHM 11.3.16.1.

Figs 10-11. Part of maxilla and occlusal view of upper dentition (Fig. 10) and part of mandible and occlusal view of lower dentition (Fig.11) in HNHM 11111 R. I. perniger

and maximum values, for the relatively greater sample of R. l. perniger the mean + and - standard deviation were used). In um1-leng and naknob-w⁺ there are no overlaps, however the maxima of R. beddomei and minimum values of other samples are in contact.

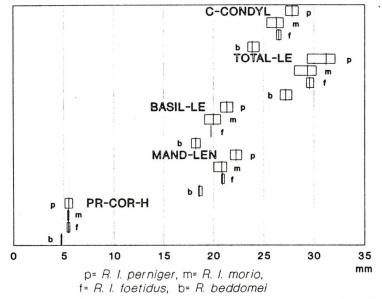


Fig. 12. High-low diagram for C-CONDYL, TOTAL-LE, BASIL-LE, MAND-LEN and PR-COR-H of R. l. perniger, R. l. morio, R. l. foetidus and R. beddomei

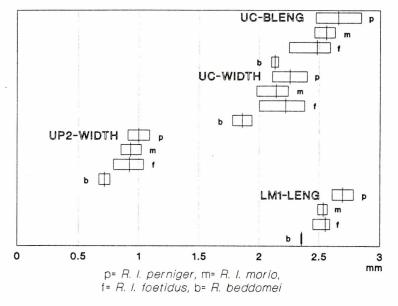


Fig. 13. High-low diagram for UC–BLENG, UC–WIDTH, UP2–WIDT and LM1–LENG of R. l. perniger, R. l. morio, R. l. foetidus and R. beddomei

For 15 variables marked with "+" (see above) further graphs (notched boxplots) showed the material of *R. beddomei* medians to be significantly different from all the others. An example is shown in Fig 14. (In the boxplots the horizontal

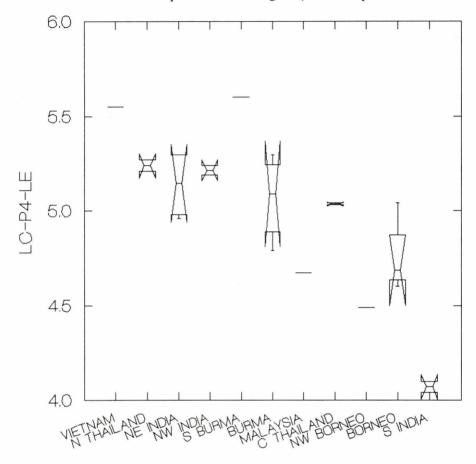


Fig. 14. Notched boxplot of lower C-P4 length in R. luctus and R. beddomei, grouped by localities

line represents the range of the sample, with vertical mark in the box as the median, the upper and lower margins (hinges) of boxes representing the interquartile range or midrange. Values outside the inner fences are plotted automatically with asterisks by the computer programme for some specimens slightly falling out of the sample, outside the outer fences with empty circles for strongly outstanding specimens. The boxes are notched at the median and return to full width at the lower and upper confidence interval values. Some of the outer confidence limits extend beyond the midrange. If the intervals around two medians do not overlap, one can be onfident that the two population medians are different [Wilkinson 1990]). In LP2–WIDT *R. beddomei* has overlaps with the Burmese and NE Indian (including Sikkim and Nepal) samples, while UC–WIDT, UP2–WIDT, LM1–M3–L and LM3–LENG of *R. beddomei* mostly overlap with the sample from C. Thailand, and LACFOR–W and UC–P4–LE with that of Malaysian

specimen, moreover, with the Bornean sample in BULLA-LE, UCP4-LE LP4-LENG and INTERO-WI. Only the example of UC-P4-LE is depicted here (Fig. 15). In all the other 13 measurements (PALBRI-L, COCH-DIS, BRCASE-H, BRCASE-W, UM1-LENG, UM1-WIDT, UP2-LENG, LP4-WIDT, LP2-LENG, LM1-TA-W, LM3-LENG, LM3-TA-W and NAKNOB-H) there are more or less extensive overlaps with the measurements of the other samples.

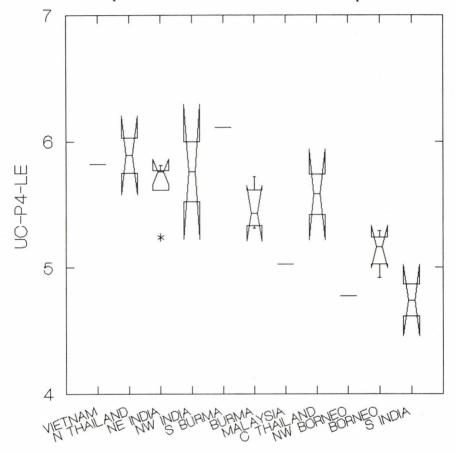


Fig. 15. Notched boxplot of upper C-P4 length, legend as for Fig. 14

The deviation of *R. l. perniger* from the more or less smaller other forms seems to be significant (the same way as above) in the following characters: c-condyl, mand-len, lm1-leng, while *R. l. morio* and *R. l. foetidus* diverges but in Brcase-w and intero-w.

Numerous scatter diagrammes showed appreciable differences between *R. beddomei* and the rest of material studied. Two of them are presented in this paper (Figs 16, 17) (where the straight lines represent the respective linear regression for the samples, ellipses for the 50% probabilities for the bivariate cloude of points). In each scatter-diagramme, for the greater samples the equations of the linear regression are also given).

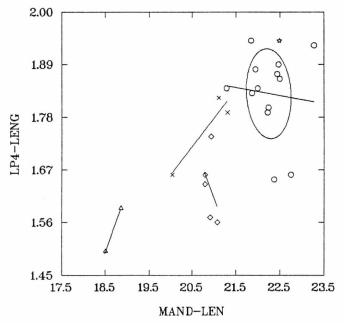


Fig. 16. Scatterplot of lower P4 length vs mandible length, in *R. beddomei* = triangles, and *R. luctus*: circles = *l. perniger*, x = l. morio, rhomboids = *l. foetidus*; equation of regression line of perniger Y = -0.017 X + 2.201

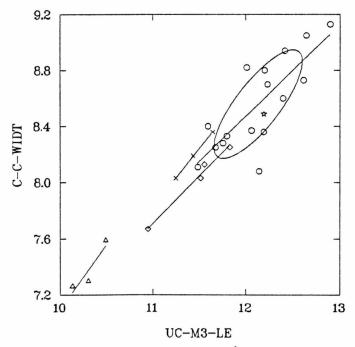


Fig. 17. Scatterplot of rostral width at C-C vs upper C-M 3 length, legend as for Fig. 16; equation of regression line of perniger Y = 0.651 X + 0.662, that of foetidus Y = 0.670 X + 0.334

A few scatterplots of indices were also made. Among these the index of measurements: MANDIB-LE/LC-P4-LE vs C-CONDYL/MAST-WID put the available specimens of R. beddomei close to a specimen of R. l. foetidus (BNHM 59.183.) and but to a single R. l. perniger (BNHM 91.10.7.55.) because of their clearly shorter lower C-P₄ row and greater mastoid width as compared to the rest of material. The indices: BASIL-LE/NAKNOB-W vs M3-M3-WI/C-C-WIDT showed R. beddomei to have a distinctly narrower nasal knob and C-C width narrower than the other specimens of various subspecies of R. luctus have, except the BNHM 91.10.7.55, and the BNHM 21.1.6.2. R. l. perniger. According to other plots of indices, data of R. beddomei well diverge from those of almost all the others because of their P² being narrower (with some overlaps with that of BNHM 21.1.6.3., BNHM 78.2310. and BNHM 91.10.7.55.), then the M₁-M₃ row being comparatively longer (the closely placed BNHM 7.1.1.294. and BNHM 79.11.21.141. specimens of R. l. perniger have long C-P4 row). Besides the above specimens, in mastoid width the BNHM 21.1.6.2. and BNHS 3073, in C-C width BNHM 91.10.7.55. and BNHM 21.1.6.2. specimens of R. l. perniger, as well as in \mathbb{P}^2 width the BNHM 76.9.20.12., in M₁-M₃ length and in C-C width the BNHM 98.11.3.9. and in C-P₄ length the BNHM 94.9.29.4. and BNHM 76.9.20.12. specimens of R. l. foetidus are near R. beddomei.

The individuals of the present study material were clustered by several linkage algorithms using Eucledian distance between them. Many of the dendrograms separate *R. beddomei* well from the rest of specimens and some of them, to lesser extent, also *R. l. morio* and *R. l. foetidus* from *R. l. perniger*.

For the single linkage clustering method all the thirty specimens were analysed for the following 13 characters: C-CONDYL, TOTAL-LE, BASIL-LE, ZYG-WIDT, MAST-WID, C-C-WIDT, M3-M3-WI, UC-M3-LE, PALBRI-L, MAND-LEN, LC-M3-LE, INTERO-W, and NAKNOB-H. At a distance of 0.686 the three South-Indian *R. beddomei* were clustered out of all the rest, moreover, at 0.550 the only Malayan specimen was separated. At 0.333 all Bornean and central Thai specimens were put together.

To the present purpose the average linkage method proved to be the most suitable one (Fig. 18). All characters of all the 30 specimens were used. At a distance of 1.570 the three *R. beddomei* are separated off, while the next branching comes at 0.730 for two groups. In one of these a single Burmese, the Malayan, and but two North-Indian specimens are grouped along with all the Bornean *R. l. foe-tidus* and the two *R. l. morio* from Central Thailand. The group of these two subspecies is separated at 0.346 from the northern specimens.

When, instead of the total number of variables only 10 were used (TOTAL-LE, MAST-WID, C-C-WIDT, NAKNOB-H, UC-M3-LE, PALBRI-L, INTE-RO-W, M3-M3-WI, MAND-LEN and ZYG-WIDT), the South-Indian species was put together with the Malayan *R. l. morio* and separated from the others at a distance of 1.686. Within the other group of clusters the subspecies *R. l. foetidus* and *R. l. morio* appeared in one cluster at 0.489. In many of the diagrams the Nepalese examples were put side by side and when available, close to the specimen from Sikkim. Interestingly enough, the two animals from N. Thailand were clustering amongst the North-Indian and Burmese *R. l. perniger* and certainly far from *R. l. morio* in Central Thailand.



Fig. 18. Tree diagram made by the average linkage method for clustering *R. beddomei* and three subspecies of *R. luctus* (individual numbers see in the list of the material, other explanations in the text)

Conclusions

Though the present study material was limited, in light of the results it still seems reasonable to separate R. beddomei at specific level from the rest of the other subspecies of R. luctus. It has especially small size, relatively shorter lower and upper C-P4 rows, relatively longer upper and lower M1-M3 rows. Furthermore, it has narrower nasal portion, narrow C-C width, reduced width of P². Other cranial and dental features in some cases present probable convergencies with the smaller southern subspecies of R. luctus). Besides, the fact that R. beddomei has the farthest distributional area certainly not connected to those of the other similarly sedentary related forms, all support this assessment. The large gap between the distribution of R. beddomei and that of R. luctus is due to the great distance and the lack of suitable habitats in the Indian Peninsula between the Western Ghats and foothills of the Himalayas. One may suspect besides a probably rather recent connection during the last cool period of the Pleistocene (Mayr 1942) also other contacts and disjunctions between the southwestern and northern areas even during the earlier cool epochs. [There are examples of allopatric species for these areas among birds (e.g. Gallidae, Psittacidae, Capitonidae, Cuculidae, Columbidae, Corvidae and Timaliidae, see Ali 1977, Woodcock 1980) and even mammals (Hemitragus, see Prater 1965) with similar distribution in the Indian Subcontinent]. The various subspecies of R. luctus in many places intergade or at least the existing gaps between their distributions are much smaller. Actually, they show much greater similarities to each other.

Acknowledgements

We thank the staff members of the National Center for Scientific Research of Vietnam, Hanoi for their help in the field, the Trustees of The Bombay Natural History Society, for access to their collection the staff of the Mammal Collection, The Natural History Museum, for supporting our investigations in the collection in London, and especially Dr. A. Demeter for providing financial support for the visit to London, as well as for his critical comments on the manuscript.

Literature

Abdulali, H. & Daniel, J.C. (1952): Races of the Indian Giant Squirrel (*Ratufa indica*). – *J. Bombay nat. Hist. Soc.* **5**0: 469-473.

Ali, S. (1977): The book of Indian birds. – Bombay Natural History Society, Bombay (10th ed.); 175 pp. Allen, G.M. (1928): New Asiatic mammals. – Amer. Mus. Novitates No. 317: 1-5.

Andersen, K. (1905a): On the bats of the *Rhinolophus philippinensis* group, with descriptions of five new species. – *Ann. Mag. Nat. Hist.* 16 (ser.7): 243-257.

Andersen, K. (1905b): A list of the species and subspecies of the genus *Rhinolophus*, with some notes on their geographical distribution. – *Ann. Mag. Nat. Hist.* 16 (ser.7): 648-662.

Andersen, K. (1918): Diagnoses of new bats of the families Rhinolophidae and Megadermatidae. – *Ann. Mag. Nat. Hist.* 2 (ser.9): 374-384.

Ando, K., Yasuzumi, F., Tagawa, A. & Uchida, T.A. (1983): Further study on the karyotypic evolution in the genus *Rhinolophus*. – *Caryologia* 36(2): 101-111.

Chasen, F.N. (1940): A handlist of Malaysian mammmals. - Bull. Raffl. Mus. No.15: xx, 209, pp.

Chen, Y., Huang, W. & Tang, Z. (1989): (The investigation of Chiroptera in Southern Jiangxi). – Acta Theriol. Sinica 9 (3): 226-227.

Corbet, G.B. & Hill, J.E. (1991): A World List of Mammalian Species. – Oxford University Press, New York, (3rd ed.) iviii, 243 pp.

Ellerman, J.R. & Morrison-Scott, T.C.S. (1951): Checklist of Palaearctic and Indian Mammals 1758 to 1946. – British Museum (Nat. Hist.), London, 810 pp.

Harada, M., Yentbura, S., Yoshida, T.K. & Takad, S. (1985): Cytogenetical study of *Rhinolophus* bats from Thailand. – *Proc. Japan Acad.*(B) 61 (9): 455-558.

Honacki, J.H., Kinman, K.E. & Koeppl, J.W. (1982): Mammal Species of the World. – Allen Press, Lawrence, Kansas, 694 pp.

Lekagul, B. & McNeely, J.A. (1977): Mammals of Thailand. - Sahakarnbhat Co., Bangkok, 758 pp.

Liang, R. & Dong, Y. (1984): (Bats from South Anhui). - Acta Theriol. Sinica 4: 321-328.

Mayr, E. (1942): Systematics and the origin of species. – Columbia Univ. Press (reprint, 1982), xxxvii, 334 pp.

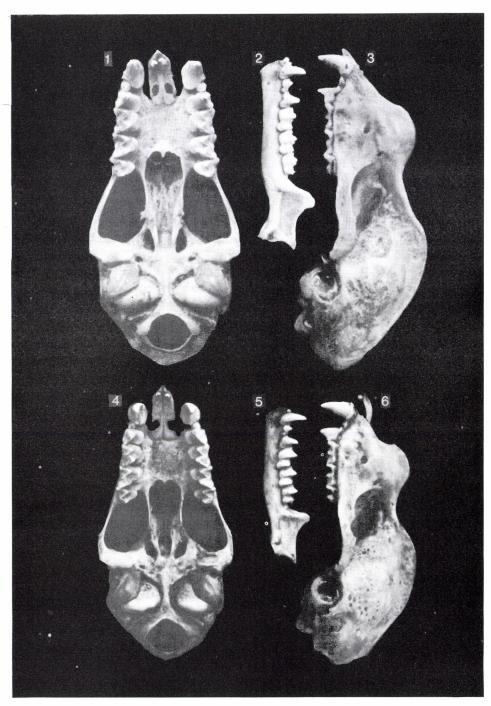
Narayana Naidu, K & Gururaj, M.E. (1984): Karyotype of *Rhinolophus luctus* (ord: Chiroptera). – Current Sci. 53(15): 825-826.

Payne, J., Francis, C.M. & Phillips, K. (1985): A field guide to the mammals of Borneo. – The Sabah Society, Kota Kinabalu, 332 pp.

Prater, S.H.(1965): The book of Indian animals. - Bombay Nat. hist. Soc. (2nd, revised ed.), 319 pp.

Sanborn, C.C. (1939): Eight new bats of the genus Rhinolophus. - Field Mus. Publ. Zool. 24: 37-43.

Sinha, Y.P. (1973): Taxonomic studies on the Indian horseshoe bats of the genus *Rhinolophus* Lacepede. – *Mammalia* 37(4): 603-630.


Tate, G.H.H. (1943): Results of The Archbold Expeditions No. 49. Further notes on the Rhinolophus philippinensis group (Chiroptera). – Amer. Mus. Novit. No. 1219: 1-7.

Tate, G.H.H. & Archbold, R. (1939): Results of The Archbold Expeditions No.24. Oriental *Rhinolophus*, with special reference to material from The Archbold Collections. – *Amer. Mus. Novit.* No. 1036: 1-12.

Wilkinson, L. (1990): SYSTAT: The System for Statistics. - Evanston, Il.: SYSTAT, Inc. 676 pp.

Woodcock, M.W. (1980): Collins handguide to the birds of the Indian Subcontinent including India, Pakistan, Bangladesh, Sri Lanka and Nepal. – Collins, London, 176 pp.

Authors' address: Dr. György Topál
Gábor Csorba
Zoological Department
Hungarian Natural History Museum
H-1088 Budapest, Baross u. 13.
Hungary

Figs 1, 3. Skull of the BNHS 3073 *R. l. perniger*; 1 = occlusal view, 3 = lateral view Fig. 2. Labial view of mandible of BNHS 3073 *R. l. perniger*Figs 4, 6. Skull of the BNHS 3081 *R. beddomei*; 4 = occlusal view, 6 = lateral view Fig. 5. Labial view of mandible of BNHS 3081 *R.beddomei*